2. Courtois N, Meier W. Algebraic attacks on stream ciphers with linear feedback. Advances in Cryptology: Proceedings of the International Conference on the Theory and Applications of Cryptographic Techniques (EUROCRYPT’03), May 4-8, 2003, Warsaw, Poland. LNCS 2656. Berlin, Germany: Springer-Verlag, 2003: 345-359
3. Armknecht F, Krause M. Algebraic attacks on combiners with memory. Advances in Cryptology: proceedings of the 23rd Annual International Cryptology Conference (Crypto’03), Aug 17-21, 2003, Santa Barbara, CA, USA. LNCS 2729. Berlin, Germany: Springer-Verlag, 2003:162-176
4. Batten L M. Algebraic attacks over GF (q). Progress in Cryptology: Proceedings of the 5th International Conference on Cryptology in India (INDOCRYPT’04), Dec 20-22, 2004, Chennai, India. LNCS 3348. Berlin, Germany: Springer-Verlag, 2004: 84-91
5. Courtois N. Fast algebraic attacks on stream ciphers with linear feedback. Advances in Cryptology: Proceedings of the 23rd Annual International Cryptology Conference (Crypto’03), Aug 17-21, 2003, Santa Barbara, CA, USA. LNCS 2729. Berlin, Germany: Springer-Verlag, 2003: 176-194
6. MeierW, Pasalic E, Carlet C. Algebraic attacks and decomposition of Boolean functions. Advances in Cryptology: Proceedings of the 23rd International Conference on the Theory and Applications of Cryptographic Techniques (EUROCRYPT’04), May 2-6, 2004, Interlaken, Switzerland. LNCS 3027.Berlin, Germany: Springer-Verlag, 2004: 474-491
7. Courtois N, Pieprzyk J. Cryptanalysis of block ciphers with overdefined systems of equations. Advances in Cryptology: Proceedings of the 8th International Conference on the Theory and Applications of Cryptology and Information Security (Asiacrypt’02), Dec 1-5, 2002. Queenstown, New Zealand. LNCS 2501. Berlin, Germany: Springer-Verlag, 2002: 267-287
8. Dalai D K, Maitra S, Sarkar S. Basic theory in construction Boolean functions with maximum possible annihilator immunity. Designs, Codes and Cryptography, 2006, 40(1): 41-58.
9. Li N, Qi W F. Symmetric Boolean functions depending on an odd number of variables with maximum algebraic immunity. IEEE Transactions on Information Theory, 2006, 52(5): 2271-2273
10. Qu L J, Li C, Feng K Q. A note on symmetric Boolean functions with maximum algebraic immunity in odd number of variables. IEEE Transactions on Information Theory, 2007, 53(8): 2908-2910
11. Qu L J, Li C. On the 2m-variable symmetric Boolean functions with maximum algebraic immunity. Science in China Series F: Information Sciences, 2008, 51(2):120-127
12. Qu L J, Feng K Q, Liu F, et al.Constructing symmetric Boolean functions with maximum algebraic immunity. IEEE Transactions on Information Theory, 2009, 55(5): 2406-2412
13. Carlet C. A method of construction of balanced Boolean functions with optimum algebraic immunity. Designs, Codes and Cryptography, 2009, 52(3): 303-338
14. Carlet C, Zeng X Y, Li C L, et al. Further properties of several classes of Boolean functions with optimum algebraic immunity. Designs, Codes and Cryptography, 2009, 52(3): 303-338
15. Fu S J, Li C, Matssuura K, et al. Construction of rotation symmetric Boolean functions with maximum algebraic immunity. Cryptology and Network Security: Proceedings of the 8th International Conference on Cryptology and Network Security (CANS’09), Dec 12-14, 2009, Kanazawa, Japan. LNCS 5888. Berlin, Germany: Springer-Verlag, 2009: 402-412
16. Li N, Qu L J, Qi W F, et al. On the construction of Boolean functions with optimal algebraic immunity. IEEE Transactions on Information Theory, 2008, 54(3): 1330-1334
17. Sarkar S, Maitra S. Construction of rotation symmetric Boolean functions with maximum algebraic immunity on odd number of variables. Proceedings of the 17th Applied Algebra, Algebraic Algorithms, and Error Correcting Codes Symposium (AAECC’07), Dec 16-20, 2007, Bangalore, India. LNCS 4851. Berlin, Germany: Springer-Verlag, 2007: 271-280
18. Li C L, Zeng X Y, Su W, et al. A class of rotation symmetric Boolean functions with optimum algebraic immunity. Wuhan University Journal of Natural Science, 2008, 13(6): 702-706
19. Liu M C, Pei D Y, Du Y S. Identification and construction of Boolean functions with maximum algebraic immunity. Science in China Series F: Information Sciences, 2010, 53(7): 1379-1396
20. Tu Z R, Deng Y P. A conjecture on binary string and its applications on constructing Boolean functions of optimum algebraic immunity. Designs, Codes and Cryptography, 2011, 60(1): 1-14
21. Armknecht F, Krause M. Constructing single- and multi-output Boolean functions with maximal algebraic immunity. Proceedings of the 33rd International Colloquium on Automata, Languages and Programming (ICALP’06), Jul 9-16, 2006,Venice, Italy. LNCS4052. Berlin, Germany: Springer-Verlag, 2006: 180-191
22. Feng K Q, Liao Q Y, Yang J. Maximal values of generalized algebraic immunity. Designs, Codes and Cryptography, 2009, 50(2): 243-252
23. Ars G, Faugere J C. Algebraic immunity of functions over finite fields. Proceedings of the 1st International Workshop on Boolean Functions: Cryptography and Applications (BFCA’05), Mar 7-8, 2005, Rouen, France. Berlin, Germany: Springer-Verlag, 2005: 21-38
24. Assmus E F, Key J D Jr. Designs and their codes. New York, NY, USA: Cambridge University Press, 1992
25. Wang Q C, Peng J, Kan H B, et al. Constructions of cryptographically significant Boolean functions using primitive polynomials. IEEE Transactions on Information Theory, 2010, 56(6): 3048-3053
26. Zhang J, Song S C, Du J, et al. On the construction of multi-output Boolean functions with optimal algebraic immunity. Science in China Series F: Information Sciences, 2012, 55(7): 1617-1623
27. Rueppel R A. Analysis and design of stream ciphers. Berlin, Germany: Springer-Verlag, 1986. |